

A REVIEW OF RAPTOR COLLECTIONS IN EUROPE WG3 STSM

Gloria Ramello, Paola Movalli & René Dekker

Mission aim, dates, participants

Aim

•To carry out a review of raptor collections in Europe with a focus on recent, frozen raptor carcasses and tissue samples

Principle objectives

- To assess how many carcasses arrive annually, how many are stored, of which species
- To assess extent to which collections store frozen tissues from these carcasses
- To assess extent of digitization of these collections
- To assess constraints on processing/storage of raptor specimens
- To assess collections' engagement in raptor research, ecotoxicology

Dates of Mission: 03/10/2019 – 26/10/2018

Mission Holder: Gloria Ramello, Museo Civico di Storia Naturale, Carmagnola, Italy

Mission Hosts: Paola Movalli & René Dekker, Naturalis Biodiversity Center, The Netherlands

Method

- 1. Gather contacts for relevant natural science collections around Europe
 - Natural history museums (NHMs)
 - Environmental specimen banks (ESBs)
 - Other research collections (ORCs)
- 2. Develop and format a *Google Forms* online questionnaire
- 3. Prepare launch including cover email, supporting letter
- 4. Launch questionnaire (email to 178 collections in 38 countries)
- 5. Track, encourage and collate responses
- 6. Analyse response data

Responses

116 responses (65%) – 74 NHMs, 7 ESBs, 35 ORCs from 30 countries

% of collections receiving raptor specimens

- 75% of all collections (87, n=116) receive fresh raptor specimens
 - NHMs (n=74) 66 receive fresh raptor specimens (89%)
 - ESBs (n=7) 2 receive fresh raptor specimens (29%)
 - ORCs (n=35) 19 receive fresh raptor specimens (54%)
- Specimens include:
 - victims of collision (vehicle, window, windmill, power line, etc.)
 - birds found shot or poisoned
 - ill or injured birds that have died at recovery centres.
- Specimens are brought in by both professionals and non-professionals

Number of raptor specimens arriving annually

Number of	NMHs (n=74)		ESBs (n=7)		ORCs (n=35)		
carcasses	no.	%	no.	%	no.	%	
0	6	8.1	0	0	11	31.4	
1-9	25	33.8	0	0	4	11.4	
10-99	26	35.1	0	0	9	25.7	
100-249	4	5.4	0	0	3	8.6	
250-499	2	2.7	1	14.3	2	5.7	
500-999	0	0	0	0	0	0	
1000+	1	1.4	0	0	0	0	
not known	10	13.5	0	0	6	17.1	
est. total	399	90+	255		1780+		
carcasses	6025+						

Number of carcasses retained in freezers

Number of	NMHs (n=74)		ESBs (n=7)		ORCs (n=35)		
carcasses	no.	%	no.	%	no.	%	
0	13	17.6	6	0	22	62.9	
1 - 9	9	12.2	0	0	4	11.4	
10 -99	30	40.5	0	0	3	8.6	
100 - 249	5	6.8	0	0	2	5.7	
250 - 499	2	2.7	1	14.3	1	2.9	
500 - 999	2	2.7	0	0	0	0	
1000+	1	1.4	0	0	1	2.9	
not known	12	16.2	0	0	1	2.9	
Total carcasses	580	00+	300		1900+		
(est.)	8000+						

Species most commonly stored in freezers

- NHMs (n=35) provided detail of specimens by species
- 49 species stored
- Most frequently stored (each >100 specimens)
 - Eurasian sparrowhawk Accipiter nisus
 - Eurasian kestrel Falco tinnunculus
 - Eurasian buzzard Buteo buteo
 - tawny owl Strix aluco
 - long-eared owl Asio otus
 - Ural owl Strix uralensis
 - barn owl Tito alba
 - eagle owl Bubo bubo

Other key findings

- Most collections store fresh tissues deriving from raptor carcasses
 - ORCs and ESBs mostly store tissues frozen, while NHMs more frequently store in ethanol (less suitable for contaminant analyses)
- Storage protocols are more frequently used in ESBs and ORCs than in NHMs
- Many raptor specimens arriving at collections are destroyed and not stored
- Constraints to storage:
 - Freezer capacity a constraint for c. ½ of NHMs and ORCs
 - Processing effort a constraint for c. ¼ of NHMs and ORCs

Digitization of collections

- NHMs (n=74)
 - 14 (19%) digitized, online
 - 16 (22%) digitized, not online
 - 32 (43%) digitization in progress
 - 12 (16%) not begun to digitize
- ORCs (n=23)
 - 1 (4%) digitized, not online
 - 4 (18%) digitization in progress
 - 18 (78%) not yet begun
- ESBs (n=2)
 - 1 digitized, available online, 1 digitized, not online

Raptor research in collections

- 20 (27%) involved in research on raptors
- 48 (65%) not actively involved

- 26 (84%) involved in research on raptors
- 4 (13%) not actively involved

- 1 (25%) involved in research on raptors
- 2 (50%) not actively involved

Ecotoxicology publications are much less frequent for NHMs than for ORCs and ESBs

Conclusions

- 1. Collections in Europe receive thousands of raptor carcasses per annum
- 2. NHMs are the key recipients of raptor carcasses for most countries
- 3. NHMs and other collections offer a substantial resource of frozen raptor carcasses and tissues from recent years
- 4. Collections have good specimen numbers for species that have been prioritised for pan-European contaminant monitoring
- 5. Freezer capacity is a key constraint to retention of carcasses
- 6. Collections are becoming digitized and thus more accessible
- 7. Contaminant biomonitoring is novel for most NHMs

Thank you!

